

Francisco Ardini

Fixed-term assistant professor

- ardini@chimica.unige.it
- **+** +39 0103538711
- **+** +39 0103536173

Education and training

2012

Doctorate in Chemical Sciences and Technologies

Development of innovative analytical methods based on ICP-MS for the determination of chemicals of environmental and toxicological interest - Excellent

University of Genoa - Genoa - IT

2008

Master's degree in Chemical Sciences

Development of analytical methods based on ICP-MS for the analysis of environmental matrices - 110/110 cum laude

University of Genoa - Genoa - IT

2006

Bachelor's degree in Chemistry

Chemical and microbiological analyses of drinking waters - 110/110 cum laude

University of Genoa - Genova - IT

Academic experience

2017 - ONGOING

Researcher

University of Genoa - Genoa - IT

2012 - 2018

Postdoctoral researcher

University of Genoa - Genoa - IT

Development of analytical methods for the determination of parameters of environmental and food interest elemental analysis of seawater sediments plants and atmospheric aerosol by ICP-MS and ICP-AES speciation of arsenic and selenium compounds by HPLC-ICP-MS iron speciation by CLE-AdSV determination of terpenes in plants and pyrazine in cocoa by GC-MS.

Language skills

ItalianEnglishSpanishMother tongueIndependentIndependent

Research interests

My research is focused on the development of analytical methods for the determination of parameters of environmental and food interest:

- Elemental analysis of seawater, snow, soils, sediments, plants, suspended particulate matter and atmospheric aerosol by ICP-MS and ICP-AES.
- Speciation of arsenic compounds in marine organisms and rice products by HPLC-ICP-MS.
- Speciation of selenium compounds in urine by HPLC-ICP-MS.
- Speciation of iron in seawater, snow, sea ice and brine with CSV.

Furthermore, I do fundamental research in the field of ICP spectrometry:

- Experimentation of different sample introduction systems for microflow analysis.
- Studies of the influence of the different chemical species of an element on ICP signal at low liquid flow rate