

Alessandro Alberto Casazza

Personale tecnico amministrativo

- alessandro.casazza@unige.it
- +39 0103552584

Istruzione e formazione

2010

Dottorato in Ingegneria Chimica dei Materiali e di Processo Università degli Studi di Genova - Genova - IT

Esperienza accademica

2010 - 2016

Assegnista di Ricerca

Università degli Studi di Genova - Genova - IT

Esperienza professionale

2016 - IN CORSO

Cat. D - Area tecnica tecnico-scientifica ed elaborazione dati

Università degli Studi di Genova

Competenze linguistiche

English

Buono

Attività didattica

Professore a contratto (Legge 240, 30/12/2010, art. 23 comma 2). a.a. 2014-2019. Dipartimento di Ingegneria Civile, Chimica e Ambientale, Università di Genova. Docente per il Corso di Laurea Magistrale in Ingegneria Chimica "Produzione di biocombustibili" come integrazione al corso ufficiale di Biotecnologie Industriali.

Professore a contratto (Legge 240, 30/12/2010, art. 23 comma 2). a.a. 2012-2018. Dipartimento di Ingegneria Civile, Chimica e Ambientale, Università di Genova. Docente per il Corso di Laurea Magistrale in Ingegneria Chimica "Processi di produzione di biocombustibili" come integrazione al corso ufficiale di Refinery and Petrochemistry. Docente a contratto per insegnamento "Concetto di bioraffineria per il settore agroalimentare" all'interno del Modulo 8 – Tecnologie a supporto dei prodotti alimentari. Master universitario di I livello "Esperto di

biotecnologie dei prodotti alimentari", DISTAV, Università di Genova.

Attività didattica e di ricerca nell'alta formazione

Supervisione di dottorandi, specializzandi, assegnisti

Docente per il corso di Dottorato Ph.D. in "Civil, Chemical and Environmental Engineering", Curriculum in "Chemical, Material and Process Engineering" dal 2013 al 2018.

Interessi di ricerca

Estrazione di composti ad alto valore aggiunto da residui dell'industria agroalimentare utilizzando tecnologie non convenzionali quali gli ultrasuoni, le microonde e le alte pressioni e temperature. Valorizzazione degli scarti mediante produzione di combustibili liquidi e gassosi tramite processi termici e biotecnologici. Crescita e impiego di microalghe per scopi ambientali (purificazione di effluenti liquidi e gassosi), energetici (produzione di biocombustibili) e alimentari (estrazione di molecole bioattive).

Attività editoriale

Peer-reviewer per le seguenti riviste internazionali: Biochemical Engineering Journal, Ultrasound Sonochemistry, LWT, Natural Product Research, Chemical Engineering Transaction.