

Franco Fais

Associate professor

Education and training

2001

Specialty in Clinical Immunology and Allergology

University of Genoa - Genoa - IT

1995

Ph.D. in Immunological Sciences

University of Genoa - Genova - IT

1989

Degree in Biological Sciences

University of Genoa - Genova - IT

Academic experience

2005 - ONGOING

Associate Professor

University of Genoa - Genoa - IT

Work experience

2015 - ONGOING

Head of the Molecular Pathology

IRCCS San Martino Hospital - Genoa - IT

Language skills

English

Independent

Research interests

I have a longstanding experience in studies on CLL pathogenesis and on the role of antigen-selection in lymphoid malignancies.

Most of my scientific studies have been (and are) related to lymphoproliferative disorders and more specifically on the role of antigen stimulation in B-cell derived lymphoma/leukemias (Burkitt Lymphoma, Primary Effusion Lymphoma and Chronic Lymphocytic Leukemia).

I believe that the my most important study is the one describing, for the

first time, that CLL IGHV regions are composed of somatically mutated and unmutated in similar proportion [PMID: 9788964]. This notion has been widely confirmed and its relevance has been reinforced by the finding that IGHV mutational status is an important and independent prognostic factor [PMID: 10477712]. These studies have also provided the first evidence that CLL IGHV repertoire is non-random.

More recently, his group focused on studies that evaluated the effects of some drugs (Metformin and Fenretinide) on CLL cells observing a diverse sensitivity between resting/activated and proliferating CLL cells [PMID: 22475870 and 26265439]. In addition, he has been actively involved in studies related to the use of small non coding RNA to induce CLL cells cycle arrest and apoptosis [PMID: 28053325]. These studies are being developed in CLL patient-derived xenografts. Indeed, we have achieved great confidence with this animal model [PMID: 27430522] that can be used to investigate several CLL disease related aspects and for drug testing. We have maintained a stable and productive collaboration with dr. Nicholas Chiorazzi (Feinstein Institute for Medical Research, Manhasset, NY).